Sunday, August 10, 2008

Electrical Power Station

Elements of a substation

Substations generally contain one or more transformers, and have switching, protection and control equipment. In a large substation, circuit breakers are used to interrupt any short-circuits or overload currents that may occur on the network. Smaller distribution stations may use recloser circuit breakers or fuses for protection of branch circuits. Substations do not (usually) have generators, although a power plant may have a substation nearby. A typical substation will contain line termination structures, high-voltage switchgear, one or more power transformers, low voltage switchgear, surge protection, controls, grounding (earthing) system, and metering. Other devices such as power factor correction capacitors and voltage regulators may also be located at a substation.

Substations may be on the surface in fenced enclosures, underground, or located in special-purpose buildings. High-rise buildings may have indoor substations. Indoor substations are usually found in urban areas to reduce the noise from the transformers, for reasons of appearance, or to protect switchgear from extreme climate or pollution conditions.

Where a substation has a metallic fence, it must be properly grounded (UK: earthed) to protect people from high voltages that may occur during a fault in the transmission system. Earth faults at a substation can cause ground potential rise at the fault location. Currents flowing in the earth's surface during a fault can cause metal objects to have a significantly different voltage than the ground under a person's feet; this touch potential presents a hazard of electrocution.

Transmission substation

A transmission substation connects two or more transmission lines. The simplest case is where all transmission lines have the same voltage. In such cases, the substation contains high-voltage switches that allow lines to be connected or isolated for maintenance. A transmission station may have transformers to convert between two transmission voltages, or equipment such as phase angle regulators to control power flow between two adjacent power systems.

Transmission substations can range from simple to complex. A small "switching station" may be little more than a bus plus some circuit breakers. The largest transmission substations can cover a large area (several acres/hectares) with multiple voltage levels, and a large amount of protection and control equipment (capacitors, relays, switches, breakers, voltage and current transformers)


Distribution substation

system of an area. It is uneconomical to directly connect electricity consumers to the high-voltage main transmission network, unless they use large amounts of energy; so the distribution station reduces voltage to a value suitable for local distribution.

The input for a distribution substation is typically at least two transmission or subtransmission lines. Input voltage may be, for example, 115 kV, or whatever is common in the area. The output is a number of feeders. Distribution voltages are typically medium voltage, between 2.4 and 33 kV depending on the size of the area served and the practices of the local utility.

The feeders will then run overhead, along streets (or under streets, in a city) and eventually power the distribution transformers at or near the customer premises.

Besides changing the voltage, the job of the distribution substation is to isolate faults in either the transmission or distribution systems. Distribution substations may also be the points of voltage regulation, although on long distribution circuits (several km/miles), voltage regulation equipment may also be installed along the line.

Complicated distribution substations can be found in the downtown areas of large cities, with high-voltage switching, and switching and backup systems on the low-voltage side. More typical distribution substations have a switch, one transformer, and minimal facilities on the low-voltage side.

Switching function
An important function performed by a substation is switching, which is the connecting and disconnecting of transmission lines or other components to and from the system. Switching events may be "planned" or "unplanned".

A transmission line or other component may need to be deenergized for maintenance or for new construction; for example, adding or removing a transmission line or a transformer.

To maintain reliability of supply, no company ever brings down its whole system for maintenance. All work to be performed, from routine testing to adding entirely new substations, must be done while keeping the whole system running.

Perhaps more importantly, a fault may develop in a transmission line or any other component. Some examples of this: a line is hit by lightning and develops an arc, or a tower is blown down by a high wind. The function of the substation is to isolate the faulted portion of the system in the shortest possible time.

There are two main reasons: a fault tends to cause equipment damage; and it tends to destabilize the whole system. For example, a transmission line left in a faulted condition will eventually burn down, and similarly, a transformer left in a faulted condition will eventually blow up. While these are happening, the power drain makes the system more unstable. Disconnecting the faulted component, quickly, tends to minimize both of these problems.

No comments: