Monday, August 18, 2008

Electrical Insulators


Material

High-voltage insulators used for high-voltage power transmission are made from glass, porcelain, or composite polymer materials. Porcelain insulators are made from clay, quartz or alumina and feldspar, and are covered with a smooth glaze to shed dirt. The design of insulators often includes deep grooves, or sheds, that provides increased arc-lengths. Insulators made from porcelain rich in alumina are used where high mechanical strength is a criterion. Glass insulators were (and in some places still are) used to suspend electrical power lines. Some insulator manufacturers stopped making glass insulators in the late 1960s, switching to various ceramic and, more recently, composite materials.

Recently, some electric utilities have begun converting to polymer composite materials for some types of insulators which consist of a central rod made of fibre reinforced plastic and an outer weathershed made of silicone rubber or EPDM. Composite insulators are less costly, lighter in weight, and have excellent hydrophobic capability. This combination makes them ideal for service in polluted areas. However, these materials do not yet have the long-term proven service life of glass and porcelain.

Insulation in electrical apparatus

The most important insulation material is air. A variety of solid, liquid, and gaseous insulators are also used in electrical apparatus. In smaller transformers, generators, and electric motors, insulation on the wire coils consists of up to four thin layers of polymer varnish film. Film insulated magnet wire permits a manufacturer to obtain the maximum number of turns within the available space. Windings that use thicker conductors are often wrapped with supplemental fiberglass insulating tape. Windings may also be impregnated with insulating varnishes to prevent electrical corona and reduce magnetically induced wire vibration. Large power transformer windings are still mostly insulated with paper, wood, varnish, and mineral oil; although these materials have been used for more than 100 years, they still provide a good balance of economy and adequate performance. Busbars and circuit breakers in switchgear may be insulated with glass-reinforced plastic insulation, treated to have low flame spread and to prevent tracking of current across the material.

In older apparatus made up to the early 1970s, boards made of compressed asbestos may be found; while this is an adequate insulator at power frequencies, handling or repairs to asbestos material will release dangerous fibers into the air and must be carried out with caution. Live-front switchboards up to the early part of the 20th century were made of slate or marble.

Some high voltage equipment is designed to operate within a high pressure insulating gas such as sulfur hexafluoride.

Insulation materials that perform well at power and low frequencies may be unsatisfactory at radio frequency, due to heating from excessive dielectric dissipation.

Electrical wires may be insulated with polyethylene, crosslinked polyethylene (either through electron beam processing or chemical crosslinking), PVC, rubber-like polymers, oil impregnated paper, Teflon, silicone, or modified ethylene tetrafluoroethylene (ETFE). Larger power cables may use compressed inorganic powder, depending on the application.

Flexible insulating materials such as PVC (polyvinyl chloride) are used to insulate the circuit and prevent human contact with a 'live' wire -- one having voltage of 600 volts or less. Alternative materials are likely to become increasingly used due to EU safety and environmental legislation making PVC less economic.

Class 1 and Class 2 insulation

All portable or hand-held electrical devices are insulated to protect their user from harmful shock.

Class 1 insulation requires that the metal body of the apparatus/equipment is solidly connected via a "grounding" wire which is earthed at the main Service Panel; but only basic insulation of the conductors is needed. This equipment is easily identified by a third pin for the grounding connection.

Class 2 insulation means that the equipment/apparatus is double insulated and is used on some appliances such as electric shavers, hair dryers and portable power tools. Double insulation requires that the devices have basic and supplementary insulation, each of which is sufficient to prevent electric shock. All internal electrically energized components are totally enclosed within insulated packaging that prevents any contact with "live" parts. They can be recognised because their leads have two pins, or on three pin plugs the third (earth) pin is made of plastic rather than metal. In the EU, double insulated appliances all are marked with a symbol of two squares, one inside the other.